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A refined theory of vibrations of a multilayer orthotropic cylindrical shell based on the method of hypotheses [1, 2] and an expansion 
of the normal displaceraent in series in terms of the thickness of the shell [3] is considered. The fact that the results are intended 
to be used in practical structures determines the set of selected hypotheses. © 1996 Elsevier Science Ltd. All fights reserved. 

Applied problems require a theory enabling one to describe the wave process from a single standpoint 
both in the two spatial directions parallel to the surface of the shell and in one direction around a region 
cut out from the shell. 

The purpose of this paper is to construct a theory of the vibrations of a cylindrical shell and a zone 
of finite dimensions in which we take into account the transverse deformation and the possibility of 
wave processes being generated by this effect. 

Existing results cannot be used directly to solve this problem because of the contradictions inherent 
in the methods of solution. One of the contradictions is that the well-known method of [3] stems from 
representing the normal displacement as a series in terms of the thickness of a flat shell, and the resulting 
solution describes vibrations in one spatial direction. In [3] there is no indication of how the results 
can be used to de.~ribe the propagation of wave processes in two spatial directions in curved shells. 
On the other hand, the method used in [1] employs only the null term of the expansion of the normal 
displacement of the shell and describes the propagation of the wave process in two spatial directions. 
In this case the resulting general equations of motion contain a contradiction, which can be readily seen 
when the equations are applied to a fiat shell. The equations of motion of a fiat shell [2, p. 238] admit 
of vibrations generated by a symmetric external load when there are no transverse deformation and 
antisymmetric vibrations, which physically should not be the case. 

In the present ]paper, by removing these contradictions, we can obtain an extended system of 
Ambartsumyan effaations, which describe the wave processes in a shell of finite dimensions. 

Consider a rigid cylindrical shell consisting of an odd number (2m + 1) of orthotropic layers arranged 
symmetrically about the middle one, which will be numbered as zero (i = 0). The layers above the middle 
one are given positive numbers from i = 1 to i = m, while those below the middle one are numbered 
from i = "1 to i = -m. Layers arranged symmetrically about the middle one have the same thickness 
and elasticity parameters. 

The directions of an orthogonal system of coordinates ¢x, I], Y coincide with the principal anisotropic 
axes of the elastic material. The origin is in the middle of the length, width and thickness of the shell. 
The coordinate (x i.,; taken to be the central angle of a transverse arc drawn from some initial rectilinear 
generatrix, 13 being the length of the generatrix. Once the dimensions of (x and I~ are chosen in this way, 
we have 

HI=Re(1 +kT), Hz= 1, k= l /Rc  

for the Lam6 coefficients. Here Rc is the radius of curvature of the middle cylindrical surface. 
The following h)potheses are used: 
1. the shear stresses vary across the thickness of the shell as prescribed by [2, p. 46] 

"[cLTi = GH( p f ( y ) ,  q) --- (p((x,l~, t) 
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xfj~ = GHX f(T), X = X( ct, 6, t) 

= f(-T) ,  f(T)[¥=+h = 0 f(Y) 

2. the normal displacement can be expanded in series in terms of the thickness of the shell [3] 

2N+I (T ) J  
Uvi =~l (Rcaot+c~)+ ~, Wj -~ , Wj=Wj(oL, fJ, t) 

j=O 

3. the tangential displacements of the middle surface are given by [2, p. 33] 

Uct0(tx, ~,T,t)lv= 0 =b+U,  U-U(ot ,~ , t )  

Uf~o(a,[J,~t,t)[v= o =d+ V, V -  V(a,~,t) 

4. the shell is loaded on the outer and inner cylindrical surfaces, the end surfaces being free of any 
loads. 

Here a, I~, "/are orthogonal coordinates, t is the time, 2h is the thickness of the many-layer shell, a 
and c are unknown angles of rotation of the shell as a whole, b and d are unknown displacements of 
the shell as a whole, xa~, xl~ $ are the shear stresses in the ith layer corresponding to the appropriate 
coordinate axes, Uo~, U :, U s, are the displacements,fiT) is a given function characterizing the variation 

~ /  . . . 

of the shear stresses across the thickness of the shell, ~0 and X are unknown functions, IV/is an unknown 
component of the normal displacement in the expansion in terms of the thickness of the shell, U and 
V are the tangential displacements of the middle surface caused by the vibrations of the shell, 2N + 1 
is the number of terms in the expansion, and GH is a convenient normalization coefficient. 

The equilibrium conditions for the medium of the ith layer undergoing harmonic vibrations can be 
represented by the following differential equations in a cylindrical system of coordinates [1, p. 18] 

Orti,tx + ( HI T'af~i )'13 +(Hll:a~'i )'~' +'CAT/+ pio32 HIUai = 0 
1 1 

a~i.~ + xl~vi,v + ~ x~i + -~1%1~i.~ + P,°~2U~ = 0 

(HI6yi)'7 +'CctTi,et + (HI'Cl3"t/)'13 +Pi°}2 nlU~'i = 0 

(1) 

Here i is the number of the layer (i varies from -m to m), Pi is the density of the material of the layer, 
¢o is the angular velocity, %i, aB/, 6~,are the principal stresses, and xa~/is the shear stress. The harmonic 

- - ' iQ lg  = _  

factor e Is omitted in all formulae. 
When deriving the equations of motion the simplicity of the equations and the precision of comparative 

results between shells is taken to be important in applied problems, rather than the precise description 
of wave processes in a shell. Therefore, when using the first equation of equilibrium of the medium 
in (1), we shall neglect the terms of order (kh) 2 compared to unity [1, p. 122]. When using the second 
equation in (1), we shall neglect the terms of order (kh) compared to unity in all expressions. An 
approximate condition is used as the third condition of equilibrium of the medium in (1), in which we 
neglect the weak influence of %i on the stress 6~. normal to the shell, which is to be determined. 

In (1) the propagation of the wave process along the central transverse arc is described more accurately 
than along the generatrix. Nevertheless, the use of a single approach to describe shells having the same 
inner structure but different surface wave parameters enables us to obtain correct comparative results 
in applied problems. 

Substituting into the third condition in (1) the given laws governing the variation of the shear stresses 
and the displacement normal to the median surface, integrating the result with respect to ~, from T/to 
T (Tbeing inside the ith layer), and taking into account the equality of normal stresses on the boundaries 
of the layer, we can find an expression from which to determine the normal component of the principal 
stress at any point of the multilayer shell 

[ %'."."I ~tP+JZ°('Y)~X]"~ = a - %  J - ; -  - 
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o32h[ RcaOt + c~ - L -h~ (RZi° +pi[li°(T)+khlil(T)])+ 

2N+i ] 
+ ~, Wj(RZii +Pi[lij(T)+khtid+i(T)l) 

j=O 

tij(T) =~1 i~, ~ dT, JZi (T)=I( I+kT) f (T)dT~,  

JZi(T) = JXi(T)+ khJY~(T), RZq - RZ~,j 

RZ±s,j = RZ±s~I,j + [l+_s~Lj (T±s) + khl±s~;Lj+l (T±s)] P±.,:;I 

RZ±s,j=RX±s.j+khRY+_s,j, RZoj=O, T0=O, s = l , 2  ..... m 

(2) 

Here o is an unknown integration constant, T1, T2 . . . . .  Tm+l are the coordinates of the upper boundaries 
of the layers with numbers 0, 1 , . . . ,  m, and T-l, T-2, • • •, T-,n+l are the coordinates of the lower boundaries 
of the layers with numbers 0, -1 . . . . .  -m. The number RZ# can be computed from the recurrent formula 
involving upper aJad lower mathematical symbols. The upper symbols correspond to positive values of 
i, while the lower ones correspond to negative values. 

Taking into acomnt relations (2), the fact thatf(T) is an even function, and the symmetry of the layers 
about the middle one, we can find an equation of equilibrium of the shell apart from terms O(kh). 
Differentiating the equilibrium equation with respect to ct, we find the first equation of motion of the 
shell 

1 O. k h O .  ( 0 2 X )  _ 1_ + 
2 O0t (On -Oh) "2-~--~ ton 3 /~'c 01~2 

+¢,t)2 Rc[aRXm+l,O + (~IoRXm+I,O +... +¥2NRXm+I,2N ) + 

h 3W; 
+kh(~lRYm+l'l+'"+~2N+lRYm+l'2N+l)]' VJ = R c Oct (3) 

Differentiating the equilibrium equation with respect to 13 and neglecting terms O(kh), we find another 
equation of motion of the shell 

2 / 1 ~2~0 t}2g~+ 1 o 

+f.O2[ ¢RXm+l,O + (~oRX,.+l,o+...+~2NRXm+I,2N)] 

= h (4) 

Here oH and Ob are the normal stresses on the lower and upper boundaries of the multilayer shell and 
~/j and ~j are the unknown components of the angles of rotation about the corresponding coordinate 
axes in the expansion in terms of the thickness of the shell. 

The stress state of the orthotropic medium of the ith layer can be determined by the semi-inverse 
method of the theory of elasticity from Hooke's law [1, p. 16] without using the equation determining 
the normal deformation 

O~ti = B[leai i A[Ov i + Bh% + 

Ofji Bileoa i A~OV i = + B~2efj i + 

(5) 
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Xwti = Giiecffi, "[[l.li = G2iel~,i ' "cal3i = G3iect~i 

• " i i i i i i . E~ V23+VI3V21 A[ = E~ yl3 +v12v23 A~ =--~- 

A=l-vi v , 
Here ea/, e~/, are the volume deformations in the it.h layer along the correspond.ing, coordinate axes, 
e ~ ,  e[~, e~/, are the shear deformations, v/u, v~3, v~21, v~z3 are Poisson's ratios E~, E~2, E~3 are Young's P 
moduh, and Gli , G2i, G3i, are the shear moduli. 

From the first two equations (5) we can see that A'~ and Ai2 are small compared with B~, B~2 , B/22 
and the contribution of the normal stress component two 00a and o~/is small. Therefore, when deter- 
mining o~ and the integration constant from (2) one can neglect infinitesimal higher-order terms 

o w = 

h +  2N+I _tO2 h Rca c~ )(RXio + l io (y )p i )  + ~, 
j:0 

2 1 
t~ = t~ c +to h(WIRX,n+I,I+...+W2N+IRXm+I,2N÷I), tJ c = ~ (t~ H + fib) 

WJ(RXo + l~J (?) P})] (6) 

Solving the fourth and fifth equations of (5), we obtain expressions for the shear displacements at any 
point of  the multilayer shell, neglecting terms O((kh) 2) 

Ua/= (1 + ky)(b + U) - a[(l + ky) Ioo (y) - 2khlol (y)] - 

2N+I [ 
- -  ~'. [ ( l+kT)  lo j (T) -2kh lo , j+ l (T)]~ j+c  p (1 

j=o 
+ k y ) ( A X i + J X i ( Y ) - ~ l i )  + 

2N+I ( 
UF3i=d+V-cIoo( 'Y) -  E ~j lOj(7)+~ B Z i + J X i ( 7 )  

j=0 

AZ0=0,  AZ±s=AX±s+khAY±., . ,  s = l , 2  ..... m 

1 
AZ±s = AZ±s-Tq + [JX±s-Tq (Yes) - khJ Y+_s:~l (Y±s)] - -  

1 
BZ o = O, BZ±s = BZ±s-.~I + JX.±s~l(y±s)--  

g2i 

Gni 
gni = , n = 1,2 

GH 

gli 

1 3  (7) 
g2i 

The relative deformations of the ith layer of the shell along the corresponding coordinate axes are given 
by [1, p. 18] 

1 
= + uy ), = ( 8 )  
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I t)U 2N+I I OWj 
eai = R c Oct j=T-'o (l°J('Y)-2khl°j+t('Y)) R c 3(x + 

l t), [AXi+JXi(.t) i_L+kh(AYi_JYi(,y) 1 ]]+ 
"1" Rc t)O~ gli ~li 

+ (l-kT) R~act+c[~+ E ~ 
R c h j=o 

el3' =---3~ j=oX l o j ( ¥ ) - ~ * - ~  i g2i ; 

The shear deformation of the ith layer of the shell [1, p. 18] is equal to 

1 
ecffJi = Uvti'fl + -~1 U[ii'a 

3U 2N+l 
eaf~i = (l + k~l)-~-ff - j~o 

+ 

+ 

[(l + kT) lojOl)- 2khlo,j+l(T)] + 

3~p 

oct g BZ, 

(9) 

When substituting e~a and el~ into the second equation of equilibrium of the medium (1), we neglect 
terms O(kh). 

Using the first two equations of equilibrium of the medium (1), Eqs (3)--(9), and the equivalence 
conditions for the moments acting in the cross-sections of the shell, we obtain the equations of motion 
of the shell 

1 3 2 3 2 

~2 ~ Zt 

1 3 t x ~ ( o . + o . )  
0 

0 
1 0 kh 3 

-i-~'5"d (a"-a~) 2Rc aa 
( c .  + ab) 
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TY~(OH +Oh) 

+ NY r2 Z2 + : 
0 1 ~(c~-~b) 

7 

D :  
k h O Z  D r  ' Q = k h Q Z  o r  ' 

II" °ll II °1 I1°  C= 0 CT P= G= ' 0 P T '  0 

D=<Dj~), Q=(Qj,), R=<R#), HX=<HX.,), 

MX=(MXis ), MY=(MYj.~), MZ=(MZjs ) 

C=(Cjs), P=(Pjs), G=(Gjs), HY=(Hy,), 
NX=(NXis), NY=(NYjs ), NZ=(NZjs) 

Z{=(U,~II ..... ~/2N+I)' Z2 =(q),~l/0 ..... ¥2N) 

YI" = ( V ,  ~I  . . . . .  ~2N+I)' Y2P = (X,~O ..... ~2N) 

j . s = l , 2  ..... 2N+4, i=1,2, n = N + 2  

R= RX khRYl[ 
kh RZ RT II 

oo 
T X  -- ( T X . )  

TY =(TY~) 

(10) 

Here Z1, g2, Y1, Y2 are column-matrix functions and the prime denotes transposition. For brevity, 
we will not present the explicit form of the matrix coefficients. 

The solution of the system of equations (10) is sought in terms of two pairs of unknown vectors (Z1, 
Z2) and (1"1, Y2). Each pair of vectors describes the vibrations of the shell along the corresponding 
coordinate axis and in the plane normal to the shell surface. Symmetric vibrations of the shell along 
the corresponding coordinate axes are described by Z1 and Y1, while antisymmetric vibrations are 
described by Z2 and Y2. The dimension of each linear system of differential equations is determined 
by the terms of the expansion of the normal displacement in terms of the shell thickness. Matrix terms 
being linear functions of (kh) are collected in the first system of equations (10), but they are discarded 
in the second system of equations. 

If we restrict ourselves only to the null term in the expansion of the normal displacement in terms 
of the thickness, then system (10) does not reduce to the known equations [1, 2]. The difference is 
that the equations of motion are written in terms of the unknown angles of rotation of the shell, 
rather than in terms of the unknown displacements. The new form of the equations of the shell proves 
important when wave processes are considered. It enables one to obtain the correct order of the 
differential wave equations and the number of boundary conditions when the number of unknowns is 
increased. 

From the system of equations (10) one can easily obtain the equations of motion of an elongated 
cylindrical region lying along a transverse arc of the cylindrical surface, the width of which is several 
times greater than the thickness. As a special case, from (10) one can obtain the equations of motion 
of a region along the generatrix of the cylindrical surface. The wave process in the region manifests 
itself strongly only down the length of the region. In this case one of the systems of equations in (10) 
becomes identically equal to zero. When deriving the equations of motion of the region one can prescribe 
the laws governing the variation of the shear stresses as a function of the thickness and width [2, p. 46], 
if necessary. The normal displacement given as a series in terms of the thickness [3] is assumed to be 
independent of the region width, i.e. there is no wave process across the region width. Since the 
dependence on the region width occurs in the equations through the given law governing the variation 
of the shear stress, the resulting equations must be averaged by integrating them over the width of the 
region. In this case Eqs (10) will be expressed in terms of averaged values. 

The general solution of problem (10) for a shell can be sought as a series in terms of the column- 
matrix eigenfunctions [4, p. 78] which satisfy homogeneous matrix equations describing the free vibrations 
of the shell and homogeneous boundary conditions 
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1 a 2 a 2 
= cx+=.=¢ PX, 

M~. R2 c aa 2 

1 3 2 a 2 

( M,~ + f.,,mGT) Y2m = 

1 a2 CT+ a2 

(11) 

Here n, l, m are the numbers of the characteristic modes of vibration, con, ~ ,  ~ are the characteristic 
angular frequencies, ZI,,, Z2~, Ylh Y2m are the column-matrix eigenfunctions, L is a matrix differential 
operator, and Ms and Ma are the matrix differential operators of symmetric and antisymmetric vibrations. 

The theory of ~4brations of a cylindrical shell constructed above, which is based on an expansion 
of the normal displacement in series in terms of the thickness, can be used in appfied problems, in 
which the transverse compression of the shell must be taken into account. The results enable shells 
having the same inner structure and different surface wave dimensions to be compared. 
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